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Public health surveillance is changing in response to 
concerns about bioterrorism, which have increased 
the pressure for early detection of epidemics. Rapid 
detection necessitates following multiple non-specific 
indicators and accounting for spatial structure. No 
single analytic method can meet all of these 
requirements for all data sources and all surveillance 
goals. Analytic methods must be selected and 
configured to meet a surveillance goal, but there are 
no uniform criteria to guide the selection and 
configuration process. In this paper, we describe 
work towards the development of an analytic 
framework for space–time aberrancy detection in 
public health surveillance data. The framework 
decomposes surveillance analysis into sub-tasks and 
identifies knowledge that can facilitate selection of 
methods to accomplish sub-tasks. 

INTRODUCTION 
Public health surveillance is changing. Until recently, 
the standard surveillance approach was to monitor a 
single diagnostic indicator, which contained a strong 
signal for a specific disease. Heightened concerns 
about bioterrorism are forcing changes to this model. 
Now, public health departments are under pressure to 
follow non-specific pre-diagnostic indicators, which 
are often drawn from many data sources. In addition, 
there is the expectation that spatial information will 
be used to facilitate the detection and localization of 
epidemics. 
The requirements of pre-diagnostic surveillance, 
following multiple non-specific indicators and 
accounting for spatial structure, cannot be met by a 
single analytic method for all data sources and 
surveillance goals. As a simple example, a control 
chart can quickly detect a large shift in a time series, 
but a control chart will not perform as well for a 
slowly increasing shift, which would be better 
detected by a cumulative sum (cusum) method. 
Continuing with this example, there are many ways 
to determine the decision threshold for a control chart 
or cusum, and different approaches may result in 
different detection characteristics. This example 
illustrates two concepts. First, aberrancy detection 
involves generic tasks (e.g., comparing observed data 
to a measure of expectation), which can be 
accomplished by different analytic methods (e.g., 

control chart, cusum). Second, knowledge exists to 
guide the selection and configuration of analytic 
methods for generic tasks. 
These two observations – (1) that aberrancy detection 
involves generic tasks which can be accomplished by 
different methods; and (2) that knowledge exists to 
guide the selection of methods – suggest that it may 
be possible to decompose the task of space–time 
aberrancy detection into generic sub-tasks, and to 
model the knowledge used to select appropriate 
methods for the sub-tasks. When taken together, the 
task decomposition and the knowledge used to select 
appropriate analytic methods constitute an analytic 
framework for space–time aberrancy detection in 
public health surveillance data. 
An obvious role for such a framework is to guide the 
identification of analytic methods that may be 
suitable for a specific analysis. A framework of this 
nature should also help to clarify the similarities and 
differences of current analytic methods, by providing 
a “knowledge-level” description [Newell, 1980] of 
the aberrancy detection process. In this paper, we 
describe work toward the development of an analytic 
framework for space–time aberrancy detection in 
public health surveillance data. This research is part 
of the BioSTORM (Biological Spatio-Temporal 
Outbreak Reasoning Module) project, which aims to 
develop and evaluate knowledge-based surveillance 
methods [Buckeridge et al., 2002]. 

TASK ANALYSIS 
Our approach to developing an analytic framework 
builds upon work on task analysis in the artificial-
intelligence and knowledge-modeling communities. 
In 1980 Alan Newell introduced the concept of the 
“knowledge level” [Newell, 1980]. Roughly 
speaking, his point was that in developing intelligent 
systems, one should first consider the task addressed 
by the system and the knowledge needed to complete 
the task (i.e., the “knowledge level”) before 
becoming bogged down in the mechanics of 
completing the task and representing knowledge (i.e., 
the “symbol level”). 
In the subsequent decades, researchers in the 
knowledge-acquisition community developed 
approaches to modeling knowledge-intensive tasks 



and applied these methods to develop “knowledge 
level” models of tasks such as diagnosis and design 
[Chandrasekaran, 1986; Steels, 1990]. These 
modeling approaches decompose tasks into sub-tasks 
and then identify a method that either further 
decomposes a sub-task, or directly accomplishes the 
sub-task. For example, diagnosis can be decomposed 
into the sub-tasks of symptom detection, hypothesis 
generation, and hypothesis discrimination 
[Benjamins & Jansweijer, 1994]. Symptom detection 
can either be further decomposed, or directly 
accomplished by a classification method [Benjamins 
& Jansweijer, 1994]. The goal of this type of 
modeling, referred to as task analysis, is to facilitate 
the acquisition and reuse of knowledge and analytic 
methods. 
The work described in this paper has similarities to 
and differences from previous work on task analysis. 
Earlier work focussed on tasks such as diagnosis and 
design, which can be viewed as search problems with 
mainly qualitative inputs and outputs. Task analyses 
of diagnosis and design typically decompose the task 
into a small number of independent sub-tasks, with 
each sub-task accomplished by a knowledge-
intensive method. While researchers have considered 
the problem of determining which methods possess 
the competence to accomplish a sub-task [Benjamins 
& Jansweijer, 1994], a solution to this problem has 
been elusive, possibly due to the nature of the 
methods used for tasks such as diagnosis. 
The aberrancy-detection task is most often viewed as 
a statistical problem with quantitative inputs and 
outputs. Unlike methods for diagnosis, statistical 
methods for aberrancy detection are generally not 
knowledge-intensive in that they do not require 
qualitative knowledge to operate. As with most 
statistical problems, the essential knowledge for 
aberrancy detection is in the selection and 
configuration of the appropriate method or methods 
to address a specific situation, and in the 
interpretation of the results of these methods. A task 
analysis of aberrancy detection must therefore focus 
on identifying the knowledge needed to select and 
configure methods appropriate for sub-tasks, rather 
than on the knowledge used by methods to 
accomplish sub-tasks. Ultimately, such a framework 
should also consider the knowledge used to interpret 
and possibly to integrate the results of methods, but 
at the moment we limit our scope to the selection of 
appropriate methods for a task. 
To summarize, previous work in task analysis has 
focussed on decomposing a generic task into sub-
tasks, and identifying methods that rely upon 
qualitative knowledge to complete sub-tasks. Little 
progress has been made in modeling the knowledge 
used to select methods for a sub-task, and the 

ultimate goal of the task analysis has traditionally 
been to facilitate the reuse of knowledge 
representations and problem solving methods. 
As with previous work on task analysis, we aim to 
identify a decomposition of the aberrancy detection 
task into sub-tasks, and identify methods that can 
address these sub-tasks. In contrast with previous 
work, we also aim to model the knowledge used to 
select a method for a sub-task. The limited 
knowledge requirements of statistical methods as 
compared to qualitative methods should be helpful in 
addressing this modeling task, which has been 
problematic for others in the past. Our primary goal 
is to develop an analytic framework that can guide 
the selection of methods for a specific surveillance 
analysis. This framework may enable automated 
configuration of aberrancy detection methods, but at 
this stage of our work we do not formalize the 
framework to the extent necessary for automation. 

A DECOMPOSITION OF THE ABERRANCY 
DETECTION TASK 

Through a review of surveillance literature and 
interaction with surveillance practitioners we have 
decomposed the task of aberrancy detection into five 
main sub-tasks: (1) specify detection goal, (2) define 
data structure for analysis, (3) organize observed 
data, (4) forecast expected data, and (5) compare 
observation and expectation. The decomposition is 
shown in Figure 1. 
Specification of a detection goal elicits knowledge of 
the expected aberrancy, and selection of a data 
structure for analysis attempts to structure the data in 
a manner that will facilitate aberrancy detection. The 
elicited knowledge and defined data structure both 
inform the selection of appropriate methods to 
complete the subsequent three sub-tasks. In the 
remainder of this section, we describe each sub-task 
and begin to consider the knowledge used to select 
methods for sub-tasks. 

1. Specify a Detection Goal 
The detection goal defines the type of aberrancy one 
intends to identify and the relative importance of 
performance characteristics such as sensitivity. In 
some situations, it may be possible to describe the 
expected aberrancy in detail, whereas in other  

Specify 
Detection 

Goal

Organize 
Observed 

Data

Forecast 
Expected 

Data

Compare 
Observed and 

Expected

Aberrancy 
Detection

Consists of 
subtasks

Define 
Data 

Structure

Specify 
Detection 

Goal

Specify 
Detection 

Goal

Organize 
Observed 

Data

Organize 
Observed 

Data

Forecast 
Expected 

Data

Forecast 
Expected 

Data

Compare 
Observed and 

Expected

Compare 
Observed and 

Expected

Aberrancy 
Detection
Aberrancy 
Detection

Consists of 
subtasks

Define 
Data 

Structure

Define 
Data 

Structure

 
Figure 1 Task decomposition of aberrancy detection. 
Ellipses indicate tasks. 



situations very little may be known about the 
aberrancy that one is attempting to detect. Either 
way, this information helps to select appropriate 
methods. For example, knowledge of the expected 
spatial pattern may allow one to select a method 
optimized to detect that type of pattern [Waller & 
Jacquez, 1995], whereas limited knowledge of the 
expected aberrancy would suggest selection of a 
method with no specific alternate hypothesis [Wong 
et al., 2002]. 
Our initial approach to describing the expected 
aberrancy identifies temporal, spatial and attribute 
aspects of the aberrancy. The temporal aspect 
includes the rate and magnitude of change, while the 
spatial aspect includes the extent and scale of 
clustering. The attribute aspect of the expected 
aberrancy refers to those attributes of the data, other 
than space and time, that may be associated with the 
aberrancy. For example, the expected aberrancy 
might be more apparent in a specific set of diagnostic 
categories, in an age group, or in an occupation.  

Performance characteristics of aberrancy detection 
include sensitivity, timeliness, and predictive value 
[Frisen, 1992]. Generally speaking, one performance 
characteristic is enhanced at the expense of another. 
Depending on the situation it may be possible to 
identify which performance characteristics are most 
important, or it may be desirable to weight all 
characteristics equally. 

2. Define a Data Structure for Analysis 
Data structure in this context means the stratification 
over attributes, the temporal resolution, and the 
spatial resolution of the data. The detection goal 
should inform the choice of data structure on the 
premise that knowledge of the expected aberrancy 
and desired performance characteristics can focus the 
aberrancy detection task towards specific aspects of 
the data.  
If one is able to clearly define a detection goal, then 
this goal may strongly suggest a preferable data 
structure. For example, if the expected aberrancy is 
known to have a rapid onset, and timeliness of 
detection is an important performance characteristic, 
then it would be preferable to organize the data into 
high resolution temporal categories. Similarly, if the 
expected aberrancy is known to present as a spatial 
cluster, then it would be preferable to select a spatial 
resolution and zoning appropriate to the expected 
scale of clustering. Stratification over attributes refers 
to the categorization of data into groups based upon 
values of one or more variables. At a minimum, the 
detection goal should suggest stratification according 
to the main variable of interest (e.g., syndrome, 
diagnosis, or risk behaviour), but the detection goal 
may also suggest additional attributes for 
stratification. Choice of data structure must also take 

into count the frequency of events. At some 
combination of stratification and space-time 
resolution, events will become sparse. This may 
make it more difficult to detect aberrancy, and will 
influence the types of analytic methods that can be 
used. 
In cases where the detection goal is not clearly 
defined, it may not be possible to clearly define a 
preferable data structure to limit the aberrancy 
detection task. As a result it may be necessary to use 
analytic methods that attempt to detect aberrancies 
over many attribute strata [Wong, Moore et al., 2002] 
or multiple spatial and temporal resolutions 
[Kulldorff, 1997]. 

3. Organize Observed Data 
The observed data must be transformed into the 
structure defined for the analysis. This might be a 
trivial task that simply requires aggregating 
individual records into groups using look-up tables. 
For example, aggregating hospital visit records to 
syndrome and home address groups on the basis of 
ICD and ZIP codes. However, if the transformation 
from the raw data to the desired data structure is not 
so straightforward, this may require more complex 
methods. For example, classification of hospital visit 
records to syndromes using free-text chief complaint 
or electronic medical record data requires the use of 
methods more advanced than aggregation. Similarly, 
classification of home street address to ZIP requires 
more than a simple look-up function. 
If the transformation from raw data to the structure 
required for analysis is straightforward, then the 
methods used to accomplish the transformation will 
likely have little effect on the overall aberrancy 
detection task. However, if approaches such as 
classification or georeferencing are required to 
transform the data, then the choice of methods may 
influence the overall aberrancy detection by 
introducing random or systematic error into the data. 

4. Forecast Expected Data 
Most approaches to aberrancy detection require a 
measure of expectation to which an observed value 
can be compared. The expected measure is usually 
derived from historical data, and often consists of a 
point estimate and possibly also a measure of 
variation around the point estimate. For example, 
time-series methods use moving average and 
autoregressive models to provide one-step-ahead 
forecasts and variance estimates. Other forecast 
methods for aspatial data include calculation of an 
arithmetic average (and variance) from historical 
values, and multiplication of a region-wide rate by a 
local measure of risk such as population. 
Forecast methods for spatial data usually rely on one 
of two approaches. The first approach is to divide the 



region into tracts, and then use aspatial forecast 
methods for each tract [Raubertas, 1989]. The second 
approach is to compute a single statistic of spatial or 
space-time clustering for the entire region, and then 
derive a forecast for that statistic [Rogerson, 1997]. 
Selection of a forecasting method should be 
influenced by the detection goal, the characteristics 
of the observed data, and the method that will be 
used to compare observation and expectation. As an 
example of the influence of data characteristics on 
method selection, time-series methods are most 
appropriately used with data that satisfy a number of 
conditions (e.g., stationary, Gaussian distribution), 
and time-series methods are difficult to apply if there 
are missing values. In terms of the detection goal, it 
may be important to note that time-series methods 
incorporate immediately previous observations into 
the forecast and therefore the forecast value can 
quickly adjust to changes in the observed value. This 
adjustment of the expected value may affect 
detection characteristics. 

5. Compare Observation and Expectation 
Once observed and expected measures are in hand, 
there are many possible approaches to identifying 
aberrancy. The simplest approach, exemplified by the 
control chart, detects aberrancy if the observed 
measure exceeds the expected point estimate by some 
multiple of the variance of the point estimate. A 
similar approach is also used to compare observed 
values to expected values obtained through time-
series forecasting methods, with the main difference 
being that the threshold is generally constant over 
time for a control chart, but varies over time in the 
time-series approach. 
Another approach is to maintain a state variable of 
aberrancy, which is updated after each comparison of 
observation to expectation. The state variable 
accumulates deviation from expectation over time, 
and following each update, the variable is compared 
to a decision threshold, which is determined on the 
basis of desired performance characteristics as 
defined by the detection goal. A number of methods 
use this approach including the cumulative sum 
[Page, 1954], cumulative score [Wolter, 1987], and 
the sets method [Chen, 1978]. 
Methods used for spatial data are tightly linked to the 
approach used to forecast expected values. If a single 
expected measure of spatial or space-time clustering 
is calculated for the entire region, then this measure 
can be compared to the observed measure using a 
control chart or aberrancy state variable [Rogerson, 
1997]. If expected measures are calculated for each 
tract within a region, then two approaches are 
possible. The first approach is to apply a separate 
control chart or aberrancy state method within each 
tract, and then make an aberrancy decision after 

correcting for the multiple comparisons made by 
looking at the tracts separately [Raubertas, 1989]. 
The second approach is to use a method that 
identifies focussed clustering of deviation from 
expectation over space and /or time among the tracts. 
An aberrancy decision is then made if detected 
clusters are unlikely to have occurred by chance 
[Kulldorff, 1997]. 
The selection and configuration of a method to 
compare observation to expectation should be based 
upon the detection goal and the characteristics of the 
data. For example, the expected aberrancy may be 
known to exhibit focussed spatial clustering at a 
known scale but at unknown location. This detection 
goal suggests that the data should be structured at an 
appropriate scale, and a spatial method optimized for 
detection of focussed clustering should be selected. 
The frequency of the observed events may provide 
further direction in selection among candidate 
methods. 

DISCUSSION 
We have described initial work towards the 
development of an analytic framework for space-time 
aberrancy detection in public health surveillance 
data. The framework includes a decomposition of the 
aberrancy detection task into sub-tasks, and the 
knowledge used to select analytic methods that can 
accomplish sub-tasks. Our initial decomposition 
identifies five sub-tasks: (1) specify detection goal, 
(2) define data structure for analysis, (3) organize 
observed data, (4) forecast expected data, and (5) 
compare observation and expectation. In this paper, 
we have described considerations in modeling the 
knowledge used to select methods, but have not yet 
begun to model this knowledge. 
The analytic framework is intended to facilitate the 
selection and configuration of methods for a specific 
analysis. We have given a number of examples of 
how different aspects of the framework might be 
used to guide selection of methods for sub-tasks, but 
have not given an example of how the framework 
might be used to guide selection of methods for a 
complete analysis. Such an example will not have 
much value until we more formally identify the 
knowledge used to select analytic methods for sub-
tasks, and further define the dependencies between 
sub-tasks. 
The framework is also intended to illustrate and 
clarify the process of aberrancy detection, and in 
doing so provide a means for understanding the 
similarities and differences of analytic methods 
currently used for aberrancy detection. We have 
discussed how many methods used for aberrancy 
detection fit within our task decomposition, and we 
have used the decomposition to illustrate 



characteristics of these methods. However, there are 
many possible approaches to decomposing the task of 
aberrancy detection, and we do not claim that the 
decomposition presented in this paper is optimal or 
that it will encompass all possible methods.  
An important consideration is whether sufficient 
knowledge exists to guide the selection of analytic 
methods. We have given examples of knowledge 
about some characteristics of a few methods, but 
little is known about the competence of many 
methods that might be used for aberrancy detection. 
While this will certainly limit the applicability of our 
analytic framework for method selection, it also 
creates an opportunity for the framework to be used 
in order to guide research on the competence of 
methods. Methods that might be used to address a 
similar sub-task, but for which there is insufficient 
knowledge to suggest using one method over the 
other, are candidates for empirical evaluation (e.g., 
using simulation studies) to determine the conditions 
under which one method might be preferable to the 
other. The knowledge obtained through this type of 
evaluation could then be used to guide the selection 
of methods. 
Future work will focus on refining our task 
decomposition, modeling the knowledge used to 
select methods for sub-tasks, and identifying 
dependencies between sub-tasks. Once the 
framework has been more formally defined, we also 
intend to implement it within a knowledge-based 
system [O'Connor et al., 2001] in order to allow 
semi-automated selection and configuration of 
analytic methods. 
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